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Abstract. The COVID-19 pandemic has highlighted the importance of defining 

sound policies to make attending workplaces safe. Sometimes, deciding on dif-

ferent policies is challenging as this highly depends on the behavior of the indi-

viduals. We introduce a Discrete Event based method to study such policies, in-

cluding human behavior along with information about the workplace layout and 

building characteristics such as ventilation rate or room capacity. We exemplify 

how to use this method using the case study of Carleton’s University Campus. 

We introduce a case study focusing on the effect of the ventilation policy on the 

number of disease cases on campus. 
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1 Introduction 

The COVID pandemic has revealed that crowded events or locations are hot spots for 

the spread of airborne viruses. When functioning at normal capacity, workplaces, in-

cluding university campuses, can be considered crowded places where people congre-

gate for a long period of time, usually for eight hours or more. For example, Carleton 

has over 30 000 students attending lectures and traveling the halls. Some lectures have 

over 200 students sitting in a closed space for at least 90 minutes. 

On top of complying with the regulations, workplaces and university campuses can-

not afford to get the disease spread among their employees or students because that will 

highly impact the daily activities of the organization. Therefore, a safe environment 

should be provided. 

To provide a safer environment, we need to collect data on how different policies 

affect the spread of the disease. Doing this with real-life experiments is not viable as 

we may risk the health of the employees/students, seeing the effect of policies takes 

time, and many variables may affect the result in unpredictable ways. We may collect 

this data by running experiments using simulation models that realistically model how 

COVID (or other diseases) spread across the workplace or university campuses. Using 

these models, we can run experiments to study the effect of different parameters on the 

spread of the disease. For example, different ventilation rates in rooms or offices, the 

number of infected people attending work, or different room capacity limits. The data 
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obtained from these experiments can be used to inform new strategies, policies, and 

identify hotspots in the workplace.  

Although there are already many simulation models to study the spread of COVID-

19, there is limited work focusing on workplaces, including human behavior, workplace 

layout, and building characteristics in the study. 

In this research, we approach this limitation by building a model that includes the 

above-mentioned aspects. More specifically, we developed a method to study the 

spread of diseases in workplaces considering human behavior and workplace charac-

teristics. We base our method on the architecture to study diffusion processes in dy-

namic multiplex networks (ADPM) presented in [1]. We adapted the architecture to 

study the spread of diseases in a workplace and exemplify the use with the case study 

of the Carleton University Campus.  

2 Background 

Different simulation models have been built and executed to study the spread of disease 

during the COVID-19 pandemic. Such simulations were useful for determining the im-

pact of COVID-19 depending upon many factors, which include control policies, the 

area's physical layout, citizens' mobility, etc. Many of these models are based on the 

well-known Susceptible-Infected-Recovered models [2,3]. These SIR models have 

evolved, and now they include other states (e.g., exposed, deceased) as well as geo-

graphical level transmission dynamics [4,5,6,7,8].  

Other studies include the use of a novel Monte Carlo simulation procedure for mod-

eling the spread of COVID-19 over time [9]. This study focuses on simulating the rate 

at which cases will appear in Australia and the UK based on knowledge of the virus 

and the initial number of cases, over a series of arbitrarily created scenarios. They cal-

culated the day when the number of new cases per day would peak for both countries. 

Their results were found to be accurate, indicating that their model could be applied to 

other nations and pandemics.  

In [10], the authors focused on the impact of urban structure on the spread of 

COVID-19. They focused on individual cities and how their physical layout affects the 

capacity of citizens to respond quickly to mobility-related policies. Such policies in-

clude stay-at-home orders, social distancing, etc. They found that while densely packed 

cities experience a greater initial infection rate, they are also easier to enforce and trans-

mit mobility policies to citizens. They use a SIR-type compartmental model where sim-

ulated individuals flow between compartments that may be labeled as susceptible, in-

fectious, or recovered. Their results proved that investing resources in early monitoring 

and prompt ad-hoc interventions in more vulnerable cities could make future pandemics 

easier to contain. 

Many other works, as presented by Loring et. al., in their literature review [11] con-

sider human behavior and social relations such as workplace, profession, or household, 

among others. However, they do not focus on developing specific models to evaluate 

the risk of getting covid in the workplace. Some other studies have focused on 
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addressing the risk of getting covid at the workplace by developing high-level proba-

bilistic models [12].  

In this work, we focus on addressing the above-mentioned limitation by developing 

a method to study the spread of diseases in workplaces considering human behavior 

and workplace characteristics.  

To do so, we consider the spread of a disease as a diffusion process. Diffusion pro-

cesses are phenomena that represent how an element may spread within a given me-

dium. For example, you could consider the diffusion of traffic across a network of 

roads, or how information travels between people in an emergency response system. 

The connections over a multiplex dynamic network (i.e., a network with different types 

of connections) determine the medium through which the element travels and how it 

travels. 

In [1], the authors propose ADPM (Figure 1) to model these types of processes. 

There are components to model the nodes, the direct and indirect connections between 

nodes, how the connections between nodes change over time, how the behavior of the 

nodes changes over time, and how the diffusion process starts. They also proposed a 

development process to instantiate this architecture, as detailed in [1]. We base our 

method on this architecture. We adapt the architecture to study the spread of diseases 

in a workplace and exemplify the use with the case study of the Carleton University 

Campus. Following the original research in [1], we also define the models in DEVS 

[13] and implement them using Cadmium Simulator [14]. 

 

 

Fig. 1. Complete ADPM architecture. 

3 An Architecture to Simulate the Spread of Diseases in 

Workplaces 

In this section, we explain how we adapted ADPM [1] to the case study of the spread 

of diseases. 

Figure 2 shows the elements of the ADPM used to study the spread of an airborne 

virus. We selected three of the components: Node, Direct Link and Node Updated. The 

Node model is instantiated with a Person model that will get and transmit the disease. 

The Node Updater model is instantiated with a Weather model as the changes in the 

weather will influence the behavior of people. Finally, the Direct Links model is in-

stantiated with several Room models because interactions between people will happen 
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in rooms. In the case of an airborne virus being spread across a population, an interac-

tion in a Room could represent sneezing near another person.  

In this case, Indirect links would represent an infected person handling an item and 

passing it to another person. With airborne viruses, the odds of a person becoming sick 

through indirect contact with a sick person are very low. Therefore, we have not in-

cluded the part of the architecture that handles indirect interactions. 

 

Fig. 2. The adapted ADPM architecture 

Each model present in figure 2 is further expanded, as shown in figure 3 and detailed 

in the rest of the section. Each component is defined as parameterized models using the 

DEVS formalisms. 

 

Fig. 3. Decomposition of the components in the adapted ADPM architecture 
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3.1 Person Model 

The Person component is defined as a coupled model with two components: a filter 

to determine which messages are for that specific person and a person atomic model to 

represent the person’s behavior.  

The behavior of a person includes their daily schedules, interpersonal relationships, 

personal choices in terms of masking, social distance, how to move around the work-

place, and their probability of being infected after exposure. The explained behavior is 

a function of the weather. For example, when the weather is mild, a person may choose 

a safer path to move around the workplace, but if it rains or snows, they will favor being 

inside.  

Each person model will have a general relationship (e.g., family, acquittance, 

stranger, etc.) established with each other person to realistically model how they engage 

in safe behaviors or not. 

In this case, the main behavioral factors we consider are if people would wear masks, 

social distance, and comply with maximum occupancy policies. 

Although we have focused on those behavioral factors, the model can be extended 

to include others. The behavioral components to be included will depend on the disease 

under study and the experiments to be performed. 

The Person model is defined as a parameterized model whose parameters are speci-

fied in an XML file, as shown in figure 4.  

Each person has the following attributes: 

- ID: a unique ID identifying the person 

- location: the location of the person at the beginning of the simulation 

- currStartTime: the time the person becomes active in the simulation 

- timeInFirstLocation: the time the person will spend in the current location 

- isSick: identifies if the person has the disease or not 

- exposed: identifies if the person has been exposed to the disease or not 

- vaccinated: identifies if the person is vaccinated or not 

- wearingMaskCorrectly: identifies if the person, when wearing a mask, wears 

the mask properly fitted or not 

- socialDistance: identifies if the person is prone to keep social distance or not 

- weatherThreshold: identifies how prone the person is to engage in unsafe be-

havior when the weather conditions are not favorable. It is a value between 0 

and 10. Zero represents low tolerance to bad weather. 

- relationship: identifies the type of relationship with other persons in the model. 

- behaviorRulesPerson: identifies the behavior patterns in terms of maintaining a 

safe social distance, wearing a mask, and entering a room at a maximum occu-

pancy based on the type of relationship with a given person 

- locationPlan: determines the person’s schedule 
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<DecisionMakerBehavior> 

<ID>3</ID> 

<location>home</location> 

<currStartTime>1280</currStartTime> 

<timeInFirstLocation>760</timeInFirstLocation> 

<isSick>False</isSick> 

<exposed>False</exposed> 

<vaccinated>False</vaccinated> 

<wearingMaskCorrectly>True</wearingMaskCorrectly> 

<socialDistance>True</socialDistance> 

<weatherThreshold>6</weatherThreshold> 

<relationship> 

  <relationship ID=”1” type=”friends” /> 

  <relationship ID=”4” type=”acquaintances” /> 

  <relationship ID=”5” type=”acquaintances” /> 

     … 

</relationship> 

<behaviorRulesPerson> 

  <personRelations status=”acquaintance” safeDistanceProb=”50” 

       maskWearingProb=”50” enterMaxOccRoomProb=”50” /> 

     <personRelations status=”friends” safeDistanceProb=”20”  

         maskWearingProb=”20” enterMaxOccRoomProb=”20” /> 

   … 

</behaviorRulesPerson> 

<locationPlan> 

  <locationPlan room=”38-VS - 2285” timeinroom=”90” startTime=”610 /> 

  <locationPlan room=”Outdoors” timeinroom=”10” startTime=”700” /> 

  <locationPlan room=”home” timeinroom=”490” startTime=”710” /> 

   … 

</locationPlan> 

</DecisionMakerBehavior> 

Fig. 4. Person XML file 

3.2 Room Model 

The Room component is defined as a DEVS coupled model with three atomic models, 

two filters to determine if the persons are coming or leaving that specific room, and a 

room atomic model modeling the room itself. Note that we are distinguishing a specific 

type of room called outdoors to represent outdoor locations where the probability of 

getting infected with an airborne virus is very low. 

 Each room atomic model determines the probability of a person being exposed to 

the virus based on several factors. These factors include whether the person and other 

people in the room wear a mask and maintain social distance, and how many sick people 

are in the room. We also use the current concentration of CO2 in the room as CO2 is 
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usually used as a proxy for the number of viral particles in a room when there are sick 

people.  

 The Room model is also defined as a parameterized model whose parameters are 

specified in an XML file, as shown in figure 5. The XML specifies the following char-

acteristics: the room’s ID, its ventilation rate, social distance threshold, maximum oc-

cupancy, several adjustable factors that contribute to the probability of exposure calcu-

lations (mask-wearing, social distance, vaccination, etc.), the respiratory increase per 

minute, the size in square meters and the height.   

 

1 <RoomParameters> 

2 <ID>5,RH - 1100</ID> 

3 <ventilationRating>3</ventilationRating> 

4 <socialDistanceThreshold>35</socialDistanceThreshold> 

5 <maxOccupancy>26</maxOccupancy> 

6 <wearsMaskFactor>1</wearsMaskFactor> 

7 <socialDistanceFactor>1</socialDistanceFactor> 

8 <vaccinatedFactor>-2</vaccinatedFactor> 

9 <sickPeopleCO2Factor>2</sickPeopleCO2Factor> 

10 <highCO2FactorThresholds>1001,1840,1857,1904</highCO2FactorThresh-

olds> 

11 <highCO2Factors>1,2,3,4</highCO2Factors> 

12 <respIncreasePerMin>340000</respIncreasePerMin> 

13 <squareMetres>71.019997</squareMetres> 

14 <height>2.438000</height> 

15 </RoomParameters> 

Fig. 5. Room XML file 

Modeling CO2 Concentration. 

To model the CO2 concentration in the room, we first calculate the increase of CO2 

because of breathing. According to Environmental Health Perspectives, “Although typ-

ical outdoor CO2 concentrations are approximately 380 ppm, outdoor levels in urban 

areas as high as 500 ppm have been reported (Persily 1997).”[15]. For our model, we 

define the outdoor concentration as 400 ppm. In [16], the authors state that “an average 

adult exhale contains 35,000 to 50,000 parts per million (ppm) of CO 2 on each 

breath”; in [17], the authors define the volume of a breath at 500 mL per breath; and in 

[18], the authors state that a person breaths between 12 and 20 times per minute. Using 

these values, we calculate the respiratory increase per minute as shown in the following 

equation. We get a respiratory increase of 340000 mg of CO2 per minute.  

𝑟𝑒𝑠𝑝𝐼𝑛𝑐𝑃𝑒𝑟𝑀𝑖𝑛(
𝑚𝑔

𝑚𝑖𝑛
) = (500 (

𝑚𝐿

𝐵𝑟𝑒𝑎𝑡ℎ
) ∗ (

35000𝑝𝑝𝑚+50000𝑝𝑝𝑚

2
) (

1𝑚𝑔

𝐿

1𝑝𝑝𝑚
) ∗

(
12(

𝑏𝑟𝑒𝑎𝑡ℎ𝑠

𝑚𝑖𝑛
)+20(

𝑏𝑟𝑒𝑎𝑡ℎ𝑠

𝑚𝑖𝑛
)

2
) =  340000

𝑚𝑔

𝑚𝑖𝑛
. 

We then calculate the decrease in CO2 because of ventilation. The air changes per 

hour (ACH) are usually anywhere between 1 and 8, but this will be a parameter of our 

https://ehp.niehs.nih.gov/doi/full/10.1289/ehp.1104789#r25
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room model since different buildings and workplaces can choose different rates. The 

ventilation rate per minute is calculated as follows: 

𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑃𝑒𝑟𝑀𝑖𝑛 (
𝐿

𝑚𝑖𝑛
) =

𝐴𝐶𝐻 ∗ 𝑣𝑜𝑙𝑢𝑚𝑒𝑂𝑓𝑅𝑜𝑜𝑚(𝑚3)

60𝑚𝑖𝑛𝑢𝑡𝑒𝑠
∗

1000𝐿

𝑚3
 

The new CO2 concentration is calculated linearly based on the CO2 concentration 

flow as follows:  

𝐶𝑂2𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (
𝑚𝑔

𝐿
) = 𝐶𝑂2𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝐹𝑙𝑜𝑤 (

𝑚𝑔

𝐿
) + 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐶𝑂2𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (

𝑚𝑔

𝐿
) 

CO2ConcentrationFlow represents the change in the CO2 concentration since the 

previous CO2 concentration was calculated. The CO2ConcentrationFlow is calculated 

by adding the CO2 entering the room from its ventilation per minute, the CO2 being 

breathed out by everyone in the room per minute, and subtracting the CO2 leaving the 

room per minute due to ventilation. 

𝐶𝑂2𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝐹𝑙𝑜𝑤 (
𝑚𝑔

𝐿
) =  

𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑇𝑖𝑚𝑒(𝑚𝑖𝑛)

𝑣𝑜𝑙𝑢𝑚𝑒𝑂𝑓𝑅𝑜𝑜𝑚(𝑚3)∗
1000𝐿

𝑚3

 ∗

 (𝐶𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑃𝑒𝑟𝑀𝑖𝑛 (
𝐿

𝑚𝑖𝑛
) ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑂2 (

𝑚𝑔

𝐿
) +  𝑟𝑒𝑠𝑝𝐼𝑛𝑐𝑃𝑒𝑟𝑀𝑖𝑛 (

𝑚𝑔

𝑚𝑖𝑛
) ∗

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑃𝑒𝑜𝑝𝑙𝑒 − 𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑃𝑒𝑟𝑀𝑖𝑛 (
𝐿

𝑚𝑖𝑛
) ∗

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐶𝑂2𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (
𝑚𝑔

𝐿
))  

The limitation of this equation is that the longer the elapsed time variable is, the less 

accurate it becomes. We have tested that for intervals of 10 minutes or less, and the 

formula is accurate. Therefore, we are sticking to those intervals. 

The CO2 concentration equations were validated using historical data from a room 

at Carleton University Campus. We collected the CO2 concentration values at half-

hour intervals over 24 hours, the volume of the room, and the number of people in the 

room. The ACH value was unknown. We calibrated the model to find the ACH value. 

Then, we validated our formula by conducting a t-test to judge if there were any incon-

sistencies between the historical data set and the data set the model produced. 

3.3 Outdoors Model 

The Outdoors is an atomic model that represents outdoors locations where the prob-

ability of being exposed to the virus is really low. This model is similar to the room 

model but with a really small probability of being infected as long as there is no close 

contact. 

3.4 Weather Model 

The Weather atomic model simulates general weather patterns such as rain and 

snow. In this version of the model, it generates a random weather pattern. This model 

can be adapted to generate weather patterns that matches the obverted weather of given 

locations. This model is important because the behavior of a person is usually influ-

enced by the weather. For example, in cold climate weather, where the temperatures 
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can reach -30C, people will prefer to move around through indoor corridors that may 

be crowded and not well ventilated instead of going outdoors. 

4 Implementation 

The model was implemented in Cadmium [14] and it is available at the following link: 

https://github.com/SimulationEverywhere-Models/COVID_Campus_Simulation.  

The model is parameterized with the number of people and number of rooms. That 

way, we can run a simulation with any number of people, over any duration, and have 

any number of rooms. 

Each instance of the Person atomic model is created the XML file described above 

that contains the person’s schedule, relationships with each other person, and several 

traits that determine their behavior. These traits include their ID, whether or not they 

are vaccinated, are sick, have been exposed, will wear a mask correctly if they are alone 

in a room, and the severity of the weather necessary for them to choose to travel via the 

tunnels. Each instance of the room is also created from an XML as described in the 

previous section. 

In order to run different scenarios, we just need to update the XML describing the 

behavior of the people and the rooms. 

 

4.1 Visualization of the Simulation Results 

Once the simulation is complete, some data logs are generated. This data is then 

parsed by a separate program implemented in Python, and different graphs and metrics 

are generated based on the data obtained. These graphs will allow showing statistical 

analysis done on the results of the chosen policies. It will help identify areas where 

there is an increased risk of infection or safer policies. 

Currently, the Python graph generator generates some graphs such as the rooms 

grouped by average exposure probability vs ventilation rate, or probability of exposure 

and occupancy vs time for each room, among others. These graphs give insights into 

which rooms pose the greatest risk for exposure and what virus mitigation policies may 

be effective. 

5 Case Study 

We show how to use the model with the case study of Carleton’s University Campus.  

In this case study, the rooms accurately resemble Carleton University’s campus. We 

got the dimensions for 4352 rooms from a Building Information Model (BIM) of the 

campus. This model did not contain ventilation data. Therefore, this will be a parameter 

for our experiments. We did not consider all the rooms. We focused on the rooms where 

students would congregate, so only rooms with an area greater than 40 square meters 

were considered. Also, many rooms were missing the height of the room and this value 

is important to calculate the CO2 concentration in the room. This brought it down to 
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434 usable rooms with over 40 square meters and complete dimensions. With the in-

formation extracted from the BIM model, XML files for every room were generated. 

Carleton Campus has a special feature; students can move from one room to the 

other going out or through a set of tunnels. We have modeled the tunnels as an instance 

of the Room atomic model where there is a chance of being exposed to the virus. 

Our simulation can also consider a varied number of users, and we define the sched-

ules of each person to accurately resemble the schedules of students and faculty on 

Carleton University’s campus. We were not able to gather actual data from scheduling 

services. Therefore, we had to implement our own scheduling.  

We implemented an event-based scheduling system for students by obtaining real data 

on rooms at Carleton’s campus. To implement the event-based scheduling system, we 

created events (e.g., lectures, tutorials, etc.) for every room. The events were labeled as 

being a tutorial, lab, or lecture, depending upon the size of the room. Lectures were 

scheduled in the largest rooms, followed by labs, and tutorials were assigned to the 

smallest rooms. The events were given durations according to their type. Lectures are 

90 minutes long, labs are 180 minutes, and tutorials are 60 minutes long. Events are 

created to fill a regular school day from 8:30 am to 9:00 pm. These events were then 

passed to the students being generated, where students are assigned schedules for events 

on a first-come, first-serve basis. A boolean is used to determine whether an event 

should be booked over its max occupancy or if it should only book at most a number of 

students equal to the room’s max occupancy. 

A possible limitation of this approach could be if there are too many students and 

not enough rooms with events for them to be given schedules. For example, if we were 

going to consider the first 30 rooms from our selection, we could only generate a pop-

ulation of 1350 people. This can change depending on what rooms we choose to use in 

a simulation. Despite this limitation, if we focus on a set of people, we can simulate the 

interactions within a faculty or the students in a given set of programs. 

We use this scenario to study the effect of ventilation on the spread of COVID on 

campus. 

5.1 Ventilation Experiments 

Although we already know that ventilation has a strong impact on the transmission 

of COVID-19, we use the above mention case study to determine, through simulation 

data, how strong is the effect of ventilation on the probability of exposure to COVID-

19. We define the probability of exposure as the chance of a person being exposed to 

COVID-19 particles. After exposure, different people have different probability of be-

coming sick, and this depends on many factors such as the person’s medical history, 

but it cannot be influenced by any COVID-19 safety protocols. In this analysis, we only 

focus on the person’s probability of being exposed to the virus.  

We will consider two scenarios over a two-week period as we assume that in two 

weeks a person infected/exposed to COVID will most likely identify that has been ex-

posed and would test for the disease. Both scenarios include 30 rooms, where 10 are 

lecture halls, 10 are student’s labs, and 10 rooms are for tutorials. Both scenarios 
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consider 1200 people, as this is the maximum number of people that can be generated 

with the chosen rooms.  

The parameter that changes between both scenarios is the ACH (Air Changes per 

Hour). In the first scenario, we set the number of ACH to 1 for every room, while in 

the second scenario, we set ACH to 8 for every room. The room representing the tunnels 

will remain the same, and no change in the ventilation rate will be applied.  

Table 1 shows the data we have used to initialize the rooms, and Table 2 the rest of 

the parameters used in our study. 

Table 1. Data of Rooms used in Experiments 

Lecture Halls Laboratories Tutorials 

Area (m3) Height (m) Area (m3) Heigh (m) Area (m3) Height (m) 

313.46 3048 121.98 3200 54.77 3048 

185.27 3200 143.65 2438 45.91 3048 

198.31 3200 122.46 2438 53.67 3048 

238.53 3200 134.33 2438 72.91 3048 

286.38 2438 150.28 2438 52.48 3048 

568.02 2438 120.25 2438 65.27 3048 

208.14 2438 112.86 2438 52.36 3200 

323.87 2438 132.82 2438 54.92 3200 

339.39 2438 132.82 2438 55.48 3200 

209.48 2438 132.84 2438 53.68 3200 

Table 2. Parameters of the Simulation 

Max occupancy ¾ of the social distance threshold 

Social distance threshold ½ of room’s area 

Wears mask factor Uniform distribution that is either 1 or 2 

Social distance factor Uniform distribution that it is either 1 or 2 

Vaccinated factor Uniform distribution from -1 to -4 

Sick People CO2 Factor Uniform distribution from 1 to 3 

CO2 Factor Thresholds 3 values with uniform distribution between 

1000 and 2000 in order from lowest to highest 

CO2 Factors 1, 2, and 3 assigned to thresholds from lowest 

to highest 

Respiratory CO2 Increase per Minute 340.000mg of CO2 

Room over capacity 30% probability that a room is assigned more 

students than its max occupancy allows 

Relationships 20% Friends; 30% Acquaintances; 50% 

Strangers 

People sick at start 0%  

People vaccinated 50%  

People wears mask when alone 50%  

Weather threshold Uniform distribution from 0 to 10 

Probabilities of wearing a mask, social 

distancing, and entering a room at max 

occupancy with Friends 

20%, 20%, and 80% 

Probabilities of wearing a mask, social 

distancing, and entering a room at max 

occupancy with Acquaintance 

50%, 50% and 50% 
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Probabilities of wearing a mask, social 

distancing, and entering a room at max 

occupancy with Strangers 

80%, 80%, and 20% 

Probability of becoming sick after  

exposure 

30% 

Time to become sick Uniform distribution from 0 minutes to 10080 

minutes (two weeks) 

Abandons schedule and stays home 

when sick 

50% chance 

Simulation Results 

From each simulation scenario, we ran five replications and obtained the CO2 con-

centration at each half-hour interval for every room, and the probabilities of exposure 

at each half-hour for every person. Five replications were enough to achieve a 95% 

confidence interval. 

We calculated the mean, sample variance, and half-width confidence intervals with 

95% confidence for the probability of exposure values for all 1200 people. Then an 

across-replication, we also calculated the sample mean, sample variance, and half-

width confidence interval with 95% confidence. We followed this same approach to 

calculate the average CO2 concentration among rooms.  

Table 3 summarizes this data for the scenario with ACH = 1 and Table 4 the data for 

the scenario with ACH = 8. 

Table 3. Data obtained for Experiment with ACH = 1 

ACH=1 Exposure Probability (%) CO2 Concentration (mg/L) 

Experiment 

Replications 

Mean Variance Conf. 

Int. 

Mean Variance Conf. Int. 

E1R1 29.9771 259.0067 ±0.9115 889.2212 88433.4321 ±111.0426 

E1R2 29.1751 250.9616 ±0.8972 879.8302 83292.0315 ±107.7664 

E1R3 28.868 237.5691 ±0.8730 880.686 88638.6487 ±111.1714 

E1R4 30.1844 266.403 ±0.9244 894.845 87977.8172 ±110.7562 

E1R5 28.5901 229.0607 ±0.8572 880.77 92257.5773 ±113.4181 

Overall 29.3589 0.48236 ±0.8624 885.0705 44.4870 ±8.2817 

Table 4. Data obtained for Experiment with ACH = 8 

ACH=8 Exposure Probability (%) CO2 Concentration (mg/L) 

Experiment 

Replications 

Mean Variance Conf. 

Int. 

Mean Variance Conf. 

Int. 

E2R1 23.4795 154.3914 ±0.7037 445.8642 1179.5802 ±12.8246 

E2R2 23.7178 161.6669 ±0.7201 444.9765 1070.3994 ±12.2167 

E2R3 24.2372 171.1704 ±0.7410 445.4648 1052.7961 ±12.1158 

E2R4 23.6137 153.7463 ±0.7023 445.7014 1131.4423 ±12.5602 

E2R5 24.561 178.8042 ±0.7573 444.4135 1101.6124 ±12.3936 

Overall 23.9218 0.2100562 ±0.5691 445.2841 0.34897 ±0.7335 
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If figure 6, we show the above data graphically. We plot every room’s ventilation 

rate compared to its average probability of exposure values. The graph represents the 

scenario with an ACH value of 8, and the graph on the right the scenario with an ACH 

value of 1.  

 

 

Fig. 6 Average Probability of exposure in each room versus ventilation rate per room. 

(Left) ACH = 8 (Right) ACH = 1 

The green dot in the bottom right that is the same for both graphs represent the tun-

nels on Carleton’s campus which are very large and well ventilated so the odds of be-

coming exposed to COVID-19 remain low. From the graph, we can see that when more 

points have a lower ventilation rate, they tend to have a higher average probability of 

exposure. The green, yellow, and red dots represent rooms with an average probability 

of exposure smaller than 10%, between 10 and 20% and over 20% respectively.  

The results of first scenario (ACH = 1) show an overall average probability of expo-

sure equal to 29.3589 ± 0.8624, and an overall average CO2 concentration of 885.0705 

± 8.2817 mg/L. The results of the second scenario (ACH = 8) show an overall average 

probability of exposure equal to 23.9218 ± 0.5691 and an overall average CO2 concen-

tration of 445.2841 ± 0.7335 mg/L. Comparing these averages, we can conclude that 

when the ventilation of all rooms on campus are improved by 7 ACH, we would see 

the average probability of becoming exposed to COVID reduce by 5.4371 ± 1.0346.  

Although around 5% is not a lot, the results prove that implementing a policy where 

the ventilation rates of rooms on Carleton’s campus are standardized at a high ACH 

value would improve safety and limit the spread of the virus. 

It is important to note that this improvement if for the population defined in table 2, 

where only 50% of people are vaccinated where the probability of wearing a mask in 

the presence of friend and acquaintance is relatively low. 

With this model, we can also examine the probability of exposure of a specific per-

son (Figure 7) or the CO2 concentration on specific rooms (Figure 8). This is relevant 

because we can analyze the behavior of people with high risk of exposure and the lo-

cations they have visited to give further insights on the factors that contribute to the 

exposure of COVID on campus.  
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Fig. 7: Probability of Exposure over 2 weeks for Person 889 when ACH = 1 

In figure 8, we can see large spikes then linear dips. During the day, when people 

are using the room and breathing CO2 into the air but with poor ventilation, the CO2 

levels only keep increasing. Then once the room is empty for the night the ventilation 

can bring CO2 back down to normal levels.  

 

Fig. 8: CO2 Concentration for Room 38-VS - 3221 over two weeks with ACH = 1 

6 Conclusions 

Being able to define policies to keep workplaces safe is critical as they cannot afford 

to have many employees sick at the same time. These policies should be supported by 

experimental data. However, doing real life experiments to collect data is not feasible.  

In this paper, we have presented an architecture and a model to study the spread of 

a disease in a workplace and analyze the effect of different policies. We have shown 

how to use this model through a case study using real data from Carleton University 

Campus to simulate the workplace environment.  

Some limitations of this research include the validation of the human behavior im-

plemented in the model as well as the factors used to correct the probability of infection 

based on the different behaviors such as social distance or mask wearing. 
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